Telegram Group & Telegram Channel
Что вы знаете про работу с временными рядами?

Временной ряд — это последовательность значений, которые были измерены в определённом временном промежутке. Такой тип данных может появляться повсеместно. Например, компаниям часто требуется знать ответ на вопрос: что будет происходить с показателями в ближайший день/неделю/месяц. Такими показателями могут быть количество пользователей, установивших приложение, пиковый онлайн и т.д.

Работа с временными рядами — это в основном прогнозирование. С точки зрения машинного обучения мы занимаемся задачей регрессии — предсказываем следующее в ряду значение. Прогноз значения ряда в какой-то момент времени строится на основе известных значений ряда до этого момента времени. Также имеет смысл строить предсказательный интервал для значений.

Виды прогнозирования:

▪️Наивное: «завтра будет как вчера»
Или «почти как вчера». Тут чаще всего используется скользящее среднее для предсказания значение ряда.
Модификацией простого скользящего среднего является взвешенное среднее, внутри которого наблюдениям придаются различные веса, в сумме дающие единицу, при этом обычно последним наблюдениям присваивается больший вес.

▪️Менее наивное: экспоненциальное сглаживание
Вместо взвешивания последних n значений ряда мы будем взвешивать все доступные наблюдения, при этом экспоненциально уменьшая веса по мере углубления в исторические данные. В этом нам поможет формула простого экспоненциального сглаживания.
Можно расширить этот метод. Будем разбивать ряд на две составляющие — уровень (level, intercept) и тренд (trend, slope). Уровень — это и есть ожидаемое значение ряда, которое мы уже предсказывали. А тренд можно тоже прогнозировать при помощи экспоненциального сглаживания.
Кроме того, можно добавить третью компоненту — сезонность, и предсказывать её тоже. Такая модель тройного экспоненциального сглаживания больше известна по фамилиям её создателей — Чарльза Хольта и Питера Винтерса.

Среди других методов анализа временных рядов выделяются:

▪️ ARIMA;
▪️ Сезонная ARIMA (SARIMA);
▪️ Рекуррентные нейронные сети (RNN).

#машинное_обучение



tg-me.com/ds_interview_lib/326
Create:
Last Update:

Что вы знаете про работу с временными рядами?

Временной ряд — это последовательность значений, которые были измерены в определённом временном промежутке. Такой тип данных может появляться повсеместно. Например, компаниям часто требуется знать ответ на вопрос: что будет происходить с показателями в ближайший день/неделю/месяц. Такими показателями могут быть количество пользователей, установивших приложение, пиковый онлайн и т.д.

Работа с временными рядами — это в основном прогнозирование. С точки зрения машинного обучения мы занимаемся задачей регрессии — предсказываем следующее в ряду значение. Прогноз значения ряда в какой-то момент времени строится на основе известных значений ряда до этого момента времени. Также имеет смысл строить предсказательный интервал для значений.

Виды прогнозирования:

▪️Наивное: «завтра будет как вчера»
Или «почти как вчера». Тут чаще всего используется скользящее среднее для предсказания значение ряда.
Модификацией простого скользящего среднего является взвешенное среднее, внутри которого наблюдениям придаются различные веса, в сумме дающие единицу, при этом обычно последним наблюдениям присваивается больший вес.

▪️Менее наивное: экспоненциальное сглаживание
Вместо взвешивания последних n значений ряда мы будем взвешивать все доступные наблюдения, при этом экспоненциально уменьшая веса по мере углубления в исторические данные. В этом нам поможет формула простого экспоненциального сглаживания.
Можно расширить этот метод. Будем разбивать ряд на две составляющие — уровень (level, intercept) и тренд (trend, slope). Уровень — это и есть ожидаемое значение ряда, которое мы уже предсказывали. А тренд можно тоже прогнозировать при помощи экспоненциального сглаживания.
Кроме того, можно добавить третью компоненту — сезонность, и предсказывать её тоже. Такая модель тройного экспоненциального сглаживания больше известна по фамилиям её создателей — Чарльза Хольта и Питера Винтерса.

Среди других методов анализа временных рядов выделяются:

▪️ ARIMA;
▪️ Сезонная ARIMA (SARIMA);
▪️ Рекуррентные нейронные сети (RNN).

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/326

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA